Model Development Manager
Posted: 1 days ago
Job Description
At Globe, our goal is to create a wonderful world for our people, business, and nation. By uniting people of passion who believe they can make a difference, we are confident that we can achieve this goal.Job DescriptionThe Model Development Manager is responsible for managing analytics projects from development to operationalization, performing analysis and predictive modelling and helping drive the change management process. Responsible for ensuring machine learning jobs are running in production and provide integration to existing and new systems.Duties And ResponsibilitiesThe responsibilities of this position will include but will not be limited to the following:Data Management and ExplorationExtraction, exploration and manipulation of large and complex data setsDesigning and derivation of transformed variables for predictive modeling/advanced analyticsDevelop big data framework combining telco data with various external sources of data (digital, social, etc) to get a 360-degree view of the customerHelp internal stakeholders in understanding, interpreting and analyzing massive data setsData Analytics And ModelingUnderstand and translate business problems into data science projects.Perform data modeling and create sophisticated analytics models. Implement and test data modeling designs. Use advanced math and statistics expertise using massive (beyond 500GB) data. Use modern data analytical techniques working with information retrieval, machine learning, matrix and graph algorithms, unsupervised clustering & data mining to solve business problemsTrack model accuracy and effectivenessIdentify model fine-tuning needs; Measure ROI from models developedCampaign ExpertiseTranslate model into results. Draws out and communicates useful insights, actionable interpretations, alternative approaches and solutions.Identify opportunities for the application of customer analytics techniques for the business, particularly for credit scoring.Use learnings from models to prioritize and sequence initiatives; Collaborate with business sponsors and different stakeholders to operationalize analytic findings.Knowledge Transfer and CollaborationSupport internal stakeholders in use of data and various analytical tools to generate and communicate insightsProvides training, demonstration, documentation and other support to drive the change management process and expand the use of analytics throughout the organizationSupport the drive for change management process to ensure the analytical developments are adopted by relevant internal teams.Develop relationships with external data and analytics partners and interact as needed.Keep updated with new data science techniques and be extremely knowledgeable of industry standards and trends.Top 3-5 DeliverablesPresent easy-to-understand datasets to internal and external stakeholdersDevelop and maintain data analytics modelsTest data model designsSkillsSoft:Excellent communication and interpersonal skillsHardProgramming languages with relational databasesStatistical analysis software Certification/License: CompetenciesCore:Stakeholder Relationship ManagementData Science and Big Data Analytics KnowledgeAnalytics Strategy ExecutionAnalytics Strategy PlanningData and Business InsightingModel Planning and DevelopmentSupportProject Management (GEN)PresentationCommunicationModel Management and Business RealizationEmergingStrategic ThinkingBusiness AcumenHiring RequirementsWork ExperienceMinimum of three (3) years’ experience in customer analytics domain and/or credit risk assessment and financial services, covering most of the following: data mining, predictive modeling, machine learning, statistical modeling and analysis, large scale data acquisition, transformation, and cleaning, both structured and unstructured dataProven track record of leading and collaborating on advanced analytics strategic initiatives; Proven track record of operationalization of analytic models in collaboration with marketing/risk and IT teamsWorked with large, unfiltered data sets or data science researchLevel of KnowledgeHas Knowledge of both structured and unstructured dataMust possess core competencies, deep understanding and relevant experience inScripting or programming experience: familiarity in programming languages with relational databases (e.g. Python, Java, Ruby, Clojure, Matlab, Pig, SQL);Statistical Analysis: advanced usage of off-the-shelf tools such as R, SAS, SPSS, Weka and other analytical tools or softwareBig Data: Experience with Big data tools such as HDFS, Cassandra, StormDatabase knowledge: skilled in structured databaseFamiliar with most of the following disciplines:Conceptual modeling: to be able to share and articulate modeling;Predictive modeling: most of the big data problems are towards being able to predict future outcomes;Hypothesis testing: being able to develop hypothesis and test them with careful experiments;Natural Language Processing: the interactions between computer and humans;Machine learning: using computers to improve as well as develop algorithms;Statistical analysis: to understand and work around possible limitations in models.EducationDegree in quantitative discipline such as Statistics, mathematics, Operations Research, Engineering, Computer Science, Econometrics or Information Science such as Business Analytics or InformaticsEqual Opportunity EmployerGlobe’s hiring process promotes equal opportunity to applicants, Any form of discrimination is not tolerated throughout the entire employee lifecycle, including the hiring process such as in posting vacancies, selecting, and interviewing applicants.Globe’s Diversity, Equity and Inclusion Policy Commitment can be accessed hereMake Your Passion Part of Your Profession. Attracting the best and brightest Talents is pivotal to our success. If you are ready to share our purpose of Creating a Globe of Good, explore opportunities with us.
Job Application Tips
- Tailor your resume to highlight relevant experience for this position
- Write a compelling cover letter that addresses the specific requirements
- Research the company culture and values before applying
- Prepare examples of your work that demonstrate your skills
- Follow up on your application after a reasonable time period